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Abstract. Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important
role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how
watersheds respond to disturbance requires understanding mechanisms that interact over multiple
spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however,
model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores.
Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or
remote sensing with allometric relationships. Spin-up involves running a model until vegetation
reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has
reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-
steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions.
However, methods for assimilating remote sensing into model simulations can also be problematic.
They often rely on empirical allometric relationships between a single vegetation variable and modeled
carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do
not account for the effects of local resource limitation, which can influence carbon allocation (to
leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using
the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stabil-
ity of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially expli-
cit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The
model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all
locations. We evaluated this approach in a mixed pine-dominated watershed in central Idaho, and a
chaparral-dominated watershed in southern California. In the pine-dominated watershed, model esti-
mates of carbon, nitrogen, and water fluxes varied among methods, while the target-driven method
increased correspondence between observed and modeled streamflow. In the chaparral watershed,
where vegetation was more homogeneously aged, there were no major differences among methods.
Thus, in heterogeneous, disturbance-prone watersheds, the target-driven approach shows potential for
improving biogeochemical projections.
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INTRODUCTION

Disturbance is a major force regulating biogeochemical
and ecohydrologic dynamics in terrestrial systems. At water-
shed scales, disturbances interact with range of landscape
features to influence carbon (C), nitrogen (N), and water
fluxes including vegetation composition and structure, ele-
vation, topography, soil drainage properties, and resource
availability (Goodale et al. 2000, Knicker 2007). These fea-
tures are never homogeneous across watersheds. As a result,
watersheds contain a mixture of patches existing at different
successional stages. Because ecosystem structure and bio-
geochemical fluxes vary strongly with successional age, eval-
uating future C, N, and water balance requires tying
together mechanisms that drive biogeochemical and ecohy-
drologic processes over complex terrain and at multiple
scales (Shugart 1984, Pastor and Post 1986, Thomas et al.
2008). Simulation modeling is a powerful tool for bridging

these scales; however, model projections are limited by
uncertainties in the initial state of plant carbon and nitrogen
stores (Hurtt et al. 2004). For models to reliably represent
biogeochemical dynamics in disturbance-prone systems,
they must be initialized to account for heterogeneous distur-
bance histories, and non-steady-state conditions.
Watershed models typically use one of two methods to ini-

tialize C and N stores prior to simulation. “Spin-up”
involves running long simulations to bring C and N pools to
steady state given the applied climate forcing (McGuire
et al. 1992, Thornton and Rosenbloom 2005, Ajami et al.
2014) and, recently, semi-analytical solutions have been used
to reduce the spin-up time required to reach steady state
(Xia et al. 2012, Shi et al. 2013). The steady-state approach,
however, assumes that vegetation across the entire watershed
has reached maturity and is of uniform age. This steady-
state assumption may suffice over long (multi-century) time-
scales when disturbance regimes are relatively stationary,
because C released via combustion and decomposition of
dead plant material is eventually replaced through photo-
synthesis by recovering plants; as such, long-term net C
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balance is close to zero (Loehman et al. 2014). However, at
temporal scales relevant to managers, steady-state assump-
tions can severely bias biogeochemical and ecohydrologic
projections because ecosystems in the early stages of recov-
ery, for example, will have very different C storage and fluxes
than mature ecosystems experiencing similar climate condi-
tions (Kashian et al. 2006, Pietsch and Hasenauer 2006).
Furthermore, climate change and changes in disturbance
frequency can offset this long-term biogeochemical and
hydrologic equilibrium.
Remote sensing has also been used to initialize C and N

stores and improve projections of biogeochemical and
hydrologic fluxes in non-steady-state systems (Turner et al.
2004, Thomas et al. 2008, Goetz et al. 2009, Antonarakis
et al. 2010, Gonzalez et al. 2010). Methods for incorporat-
ing remote sensing into model simulations often rely on
empirical, allometric or regression relationships between a
single vegetation variable (often leaf area index; LAI) and
the various C and N stores being modeled (Running and
Coughlan 1988, Coughlan and Dungan 1997, Hurtt et al.
2004, Tague and Band 2004). However, these relationships
can sometimes be problematic, because they are species- and
site-specific. When applied at large scales, they do not
account for local resource availability and site conditions
(including local climate, soil water-holding capacity, ground-
water accesses, etc.), which can influence C allocation to
leaves, stems, and roots (Motallebi and Kangur 2016). For
example, two patches may have identical LAI; in one patch,
the LAI may be limited by temperature, in the other by
water availability, even within the same watershed. The vege-
tation growing in the dry location would likely allocate more
C belowground to maximize access to water. If researchers
derive allometric relationships (as a function of LAI) based
on region-wide data, root C may be underestimated in the
water-limited site, resulting in C and N distributions that are
unrealistic. In the worst-case scenario, starting a simulation
with this initial root C may be unstable, causing vegetation
biomass to rapidly decline because roots cannot access
enough water to support photosynthesis estimates that are
large enough to cover the respiration costs required by the
initialized aboveground C stores. In addition, because allo-
metric relationships derive C stores from a single measured
variable (e.g., LAI), they cannot draw on multiple data prod-
ucts, which may be invaluable for improving the way we ini-
tialize vegetation structure in disturbance-prone watersheds.
To address the potential limitations associated with com-

monly used spin-up strategies, and to provide a method for
integrating multiple state-of-the-art data products, we devel-
oped a novel approach for initializing vegetation C and N
stores in biogeochemical models using the spatially dis-
tributed, ecohydrologic model RHESSys (Tague and Band
2004). In this approach, one or more vegetation variables
derived from a spatial data layer, such as LAI from Landsat
or MODIS, stem wood from LiDAR, or stand age maps,
can be used to define spatially explicit targets for individual
landscape units (i.e., patches) across a watershed. Then, a
spin-up implementation of the model is used to simulate
plant growth and track C and N stores in each patch until
they reach these targets. Once all patches have reached their
targets, the model outputs state variables that can be used to
initialize subsequent simulations. This approach allows C

and N pools to develop mechanistically over time, account-
ing for the effects of local resource and climate variability.
Additionally, unlike traditional spin-up, which assumes
steady-state conditions, the new approach uses remote sens-
ing to spatially constrain pool sizes. Thus, the new approach
supports heterogeneous stand ages that are characteristic of
disturbance-prone systems.
Here, we present our new target-driven initialization

approach. Then, as a first evaluation, we compare model esti-
mates of C, N, and water fluxes using the new approach to
those using the two previously established methods (spin-up
to steady state and remote sensing coupled with allometric
relationships). We also compare model estimates of stream-
flow following initialization with observation-based estimates.
Specifically, we address the following questions: (1) How do
projected LAI, rooting depth, evapotranspiration, stream-
flow, and N export vary among simulations using the three
different approaches for initializing C and N pools? (2) In
years following initialization, does the new target-driven
approach provide similar or improved correspondence
between modeled and observed streamflow relative to previ-
ously established approaches? We then discuss potential fur-
ther applications of our approach that would integrate data
from awide range of emerging remote sensing products.

METHODS

Study sites

We implemented our spin-up approaches and compared
estimates of C, N, and hydrologic dynamics in two fire-
prone watersheds in the western United States. The first
watershed, Johnson Creek, is a 565-km2 subcatchment of
the South Fork Salmon River, which is part of the larger
Columbia River Basin. Johnson Creek is located in Valley
County, Idaho along the southern boundary of Payette
National Forest and the northern boundary of Boise
National Forest (44°580 N, 115°300 E; Fig. 1a). The region
is characterized by cold winters with heavy snowfall, which
constitutes ~65% of annual precipitation. Summers are hot
and dry with most warm-season precipitation falling during
high-intensity thunderstorms (Megahan et al. 1992). Mean
annual precipitation in the region is ~680 mm, however
rainfall varies substantially between wetter montane forests
and semiarid interior valleys. Johnson Creek is located
within the Idaho batholith, where steep slopes and granitic
bedrock produce shallow coarse-textured soils (Hyndman
1983). Elevations range from 1,429 to 2,779 m. Vegetation is
mixed pine species, dominated by ponderosa pine (Pinus
ponderosa) and Douglas-fir (Pseudotsuga menziesii) at lower
elevations, and lodgepole pine (Pinus contorta var. latifolia),
grand fir (Abies grandis), Engelmann spruce (Picea engel-
mannii), and subalpine fir (Abies lasiocarpa) at higher eleva-
tions (Arkle and Pilliod 2010). Riparian, shrub, and
herbaceous species are also present (Homer et al. 2015).
Most fires in the region are either mixed severity or stand
replacing (surface fires are relatively rare); stand-replacing
fires occur on average every 200 yr (Rollins 2009). Eleven
fires burned portions of the watershed between 1989 and
2015; the two largest being the Thunderbolt fire in 1994 and
Cascade Complex in 2007 (Eidenshink et al. 2007).
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The second site, Rattlesnake Canyon, is a chaparral-domi-
nated, 6-km2 subcatchment of the Mission Canyon water-
shed, located in the Santa Ynez Mountains in southern
California (34°280 N, 119°400 W; Fig. 1b). The region has a
Mediterranean climate with cool wet winters and hot dry
summers. Mean annual precipitation ranges from 500 mm/yr
at lower elevations to 850 mm/yr at higher elevations, 80%
of which typically falls between December and March
(Beighley et al. 2005). Elevations in Rattlesnake Canyon
range from 270 to 1,262 m, and slopes are steep (>20%).
Soils in the region are classified as Typic Dystroxerepts from
the Maymen series (NRCS 2015). These sandy loam soils
are weathered from shale, schist, greenstone, sandstone, and
conglomerate. They are rocky, nutrient poor, shallow, well
drained, and highly erosive. Vegetation in Rattlesnake

Canyon includes evergreen shrubs, dominated by big pod
ceanothus (Ceanothus megacarpus), chamise (Adenostoma
fasciculatum), and manzanita (Arctostaphylos spp.). These
species are well adapted to crown fires, which consume most
aboveground vegetation. Fire return intervals typically
range from 40 to 60 yr (Moritz 2003). Most of Rattlesnake
Canyon burned in the 2009 Jesusita Fire, and a small por-
tion burned in the 2008 Tea Fire. Prior to these fires, the
watershed last burned in the 1964 Coyote Fire.

RHESSys model

Model development and simulations for this study were
conducted using RHESSys. RHESSys is a spatially dis-
tributed, mechanistic model that couples ecohydrologic and

FIG. 1. Study sites include (a) the Johnson Creek watershed, which is a subcatchment of the Southfork Salmon River within the Colum-
bia River Basin in Valley County, Idaho (ID) and (b) the Rattlesnake Canyon watershed, which is nested within the upper reach of Mission
Canyon in the Santa Ynez Mountains in Santa Barbara County, California, USA.
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biogeochemical processes to simulate water, C, and N fluxes
such as streamflow, evapotranspiration, photosynthesis, res-
piration, NPP, and N export at watershed scales. RHESSys
has been rigorously tested and run in mountainous regions,
including watersheds in the Pacific Northwest and Califor-
nia chaparral (Tague et al. 2004, 2009, Shields and Tague
2012, Abdelnour et al. 2013, Garcia et al. 2013, 2016,
Hanan et al. 2017).
RHESSys partitions a watershed into a hierarchical set of

spatial units representing the scale at which different hydro-
logic and biogeochemical processes are modeled (Tague and
Band 2004). Vertical soil moisture and soil biogeochemistry
are modeled at the finest spatial scale (the patch). Meteoro-
logical forcings (time-varying inputs) are also organized at
the patch level, and are modified by elevation, slope, and
aspect. Hillslopes aggregate explicit routing between patches
to produce streamflow, and are defined as areas that drain
into one side of a single stream reach. For our application,
meteorological inputs include daily maximum and minimum
temperature and precipitation. Vapor pressure deficit
(VPD) and incoming radiation are calculated by RHESSys
using standard air-temperature–VPD relationships
(Jones 2013) and the MTN-CLIM approach (Running et al.
1987), respectively. The largest spatial unit is the basin,
which is a closed drainage area encompassing a single
stream network.
RHESSys uses geospatial data including a digital eleva-

tion model (DEM), as well as soil and landcover maps, to
delineate biophysical characteristics across a watershed. It
extrapolates spatial variation in climate inputs across the
terrain using lapse rates (Tague and Band 2004). RHESSys
then models vertical and lateral hydrologic fluxes, includ-
ing rainfall interception, snow accumulation, snowmelt,
infiltration, evapotranspiration (using a Penman-Mon-
teith approach (Monteith 1965), and subsurface drainage.
Vertical and lateral drainage respond to topography and
soil hydraulic conductivity, which decreases exponentially
with depth.
Biogeochemical processes in RHESSys include C cycling

and corollary N dynamics. Photosynthesis is estimated using
the Farquhar model (Farquhar and Von Caemmerer 1982)
and, in this study, a portion of net photosynthate is allo-
cated to leaves, stems, and roots each day according to the
Dickinson partitioning strategy, which accounts for changes
in allocation that occur as a plant matures (Dickinson et al.
1998). The remaining portion of net photosynthate is stored
and expressed during an annual leaf-out period. RHESSys
estimates of LAI are based on simulated leaf C and a spe-
cies-specific leaf area parameter. Transpiration and photo-
synthesis are both influenced by stomatal conductance,
which varies in response to soil water availability, VPD,
atmospheric CO2 concentration, radiation, and temperature
(Jarvis 1976). These relationships couple plant productivity
with climate and hydrology. Decomposition submodels are
modified from BIOME-BGC and CENTURY-NGAS.
These include litter and soil C and N dynamics, such as res-
piration, mineralization, nitrification, and denitrification
(Parton 1996, Nemani et al. 2005). Tague and Band (2004)
provide a detailed description of the hydrologic, ecophysio-
logical, and biogeochemical algorithms used to estimate the
above processes.

Modeling framework for initializing C and N pools

In the previous version of RHESSys, users could choose
between the two commonly used methods for initializing
vegetation C and N stores: (1) they could spin pools up from
zero until they reached steady state (Tague and Band 2004)
or (2) users could initialize carbon pools with allometric
tables to assign C and N stores as a function of remotely
sensed LAI (Fig. 2).
In the new target-driven spin-up approach, we use a vege-

tation spatial data layer to define one or more targets for
each patch. Targets are defined broadly to allow for the use
of a wide range of possible C and or N observations. Any
RHESSys C or N store (e.g., leaf C, stem N, etc.) or combi-
nation of stores (e.g., above ground biomass) can be used.
The user can also specify multiple targets (e.g., leaf C and
stem C). Possible RHESSys state variables are listed in
Table 1. A spin-up implementation of the model is then used
to grow all stores from near zero values (a small initial value
(e.g., 0.004 kg C/m2) for leaf and root C are required to ini-
tiate growth). The spin-up implementation of the model
then simulates growth for each patch using site-specific cli-
mate inputs and vegetation/soil parameters. Plant C and N
stores are tracked for each patch until they reach their target
(s). When an individual patch reaches its target(s), values for
all of the C and N pools are stored in a separate location
while all other patches in the basin continue to grow and
accumulate C and N

CNstored ¼ CNwhenCNtracked � targetx
� s targetxð Þ&T �Tmax:

(1)

In this equation, CNstored represents the values for each of
the C and N pools that are stored when a given patch
reaches its target(s). CNtracked represents the state variable(s)
being tracked; s represents tolerance, which is a user-defined
parameter that sets the allowable error between the parame-
ter(s) being tracked during spin-up and the target value(s).
The default value for s is 0.05. Thus, the target is reached
when model estimate of the target variable (e.g., LAI) is
within 5% of the user-specified target(s) for a given patch.

FIG. 2. Illustration of how remote sensing such as leaf area
index can be used to allocate C and N to the various carbon and
nitrogen stores in models. Leaf area index (LAI) is generally mea-
sured using remote sensing and C and N stores subsequently are cal-
culated using allometric relationships.
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The parameter s can be changed to reflect greater or lesser
confidence in the accuracy or precision of the user-specified
target. Note that, because RHESSys estimates are increasing
toward the target, we use s to define a lower bound, how-
ever, it is possible to go beyond the target if the value being
tracked exceeds the target in a given time step. Once the tar-
get is exceeded, the current carbon and nitrogen values are
stored. T represents the length of time the model has been
spinning up and Tmax is an additional user-defined parame-
ter that sets limits on the length of spin-up time. Where data
are missing, vegetation is allowed to spin up to steady state
(or as long as is defined by the parameter Tmax).
Once all patches have reached their targets, the model out-

puts the state variables, including the appropriate C and N
stores, for all patches. These state variables can then be used
to initialize subsequent simulations. This approach allows
patches to differ from one another in terms of the number of
years required for spin-up, thus supporting non-homoge-
neous stand ages, while still allowing C and N stores to
develop mechanistically over time.

Input data

We derived landscape topographic characteristics includ-
ing elevation, slope, and aspect for each watershed from a
digital elevation model downloaded from the U.S. Geologic
Survey National Elevation Data set at 10-m resolution.5

Basin boundaries, hillslopes, and patches were then delin-
eated in GRASS GIS (GRASS Development Team, http://
grass.osgeo.org) using the watershed analysis program, r.wa-
tershed. For Johnson Creek, we aggregated topographic
data to generate patches with an average size of 30 m2 and
270 m2 in riparian and upslope areas, respectively. This

approach allowed us to maximize computational efficiency
in a relatively large watershed, while still maintaining fine
resolution in key regions (Tague et al. 2004). Johnson Creek
contained 189,872 patches, organized into 275 hillslopes of
varying sizes (mean = 0.49 km2). In Rattlesnake Canyon,
all patches were aggregated to 30 m2, resulting in 6,095
patches that were organized into 34 hillslopes (mean
size = 0.17 km2). Vegetation land cover from the National
Land Cover Database (NLCD; Homer et al. 2015) was
aggregated to six types in Johnson Creek: conifer, grass/
herbaceous, shrub, deciduous, open water, and rock. Vegeta-
tion was aggregated to one type (shrub) in Rattlesnake Can-
yon. Soil and vegetation parameters for these land cover
types were assigned based on literature (Law et al. 2003,
Ackerly 2004, Vourlitis et al. 2007, Berner and Law 2016,
Hanan et al. 2016a, b) and existing spatial data layers
(White et al. 2000, Tague et al. 2009).
For Johnson Creek, we acquired daily, high-resolution (1/

24th degree or ~4 km) gridded meteorological data, namely,
precipitation and maximum and minimum temperatures for
water years 1980–2014 (Abatzoglou 2013). This data set com-
bines the spatial attributes of gridded climate data from
PRISM (Daly et al. 1994) with temporal attributes of regio-
nal-scale reanalysis and daily gauge-based precipitation from
NLDAS-2 (Mitchell et al. 2004, Abatzoglou and Brown
2012, Abatzoglou 2013). For Rattlesnake Canyon, climate
data for water years 2001–2013 is composed of daily gauge-
based precipitation data taken from the nearby Stanwood
Fire Station and daily temperature data taken from the
National Climate Data Center (NCDC) Santa Barbara moni-
toring site near the harbor (Fig. 1b). We generated climate
data for long simulations by repeating the available 34-yr
meteorological record in Johnson Creek, and the 13-yr record
in Rattlesnake Canyon. We also collected streamflow data
from USGS gage no. 13313000 for Johnson Creek and Santa
Barbara Coastal Long Term Ecological Research Network
Gauge no. RS02 for Rattlesnake Canyon (Fig. 2a, b).
We used a Monte Carlo approach to calibrate four shal-

low subsurface soil parameters: saturated hydraulic conduc-
tivity (Ksat), decay of Ksat with depth (m), air-entry pressure
(φae), and pore size index (b), as well as two parameters used
to define bypass flow to deeper groundwater stores (gw1)
and groundwater drainage rates to the stream (gw2). In
Johnson Creek, we selected the best parameter set by com-
paring observed and modeled streamflow using the Nash-
Sutcliffe efficiency metric (NSE; Nash and Sutcliffe 1970),
NSE of log transformed flows (to evaluate low flow peri-
ods), R2 for the correlation between daily observed and
modeled flow, and percent error in annual flow estimates. In
Rattlesnake Canyon, prior hydrologic modeling studies
found that peak flow estimates were highly sensitivity to pre-
cipitation input and model sensitivity to soil drainage and
storage parameters was greatest during streamflow recession
(Shields and Tague 2012). Given the potentially large uncer-
tainty and error in precipitation input data in this semi-arid
region, we found that calibrating on recession periods pro-
vided a more robust estimation of drainage parameters. In
Rattlesnake Canyon, we extracted recession periods, and
then selected the best parameter set by comparing observed
and modeled streamflow using NSE of log-transformed
flows and percent error in annual flow estimates.

TABLE 1. List of RHESSys state variables that can be used for
assigning spin-up targets, and potential sources for acquiring
these measurements.

Store and variable Source

C
Leaf hyperspectral remote sensing (e.g.,

AVIRIS)
Stem active remote sensing (e.g., lidar)
Root active remote sensing (e.g., ground-

penetrating radar), field measurements
N
Leaf hyperspectral remote sensing
Stem combined hyperspectral and active

remote sensing
Root field measurements

Combined
Aboveground biomass multispectral remote sensing (e.g.,

MODIS, Landsat), hyperspectral remote
sensing, active remote sensing

Leaf Area Index multispectral remote sensing,
hyperspectral remote sensing, active
remote sensing

Canopy height active remote sensing
Stand age field surveys

Note: Users can define one or more targets from this list.

5 https://nationalmap.gov/elevation.html
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Remote sensing

For this study, we based targets on LAI. We calculated
LAI for Johnson Creek and Rattlesnake Canyon using the
best available remote sensing scenes for each region. To pro-
duce peak-growing season LAI input layers for initializing
Johnson Creek, we used Landsat-7 Enhanced Thematic
MapperPlus (ETM+) surface reflectance data generated at
30-m resolution, acquired on 8 August 2001 for WRS2 path/
row 41/29. We calculated a Normalized Difference Vegeta-
tion Index (NDVI) for the 2001 reflectance data using

NDVI ¼ qNIR � qRð Þ
qNIR þ qRð Þ (2)

where qNIR represents reflectance in the near infrared por-
tion of the electromagnetic spectrum and qR represents
reflectance in the red.
In Rattlesnake Canyon, we acquired hyperspectral remote

sensing imagery collected at 12 m resolution by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS;
Green et al. 1998) on 6 August 2004. The AVIRIS scene was
atmospherically corrected, converted to reflectance and geo-
rectified (D. A. Roberts, unpublished data). We calculated
NDVI using Eq. 1. For both Landsat 7 ETM+ and AVIRIS,
the qNIR band is centered at 830 nm, and qR band is cen-
tered at 660 nm.
To transform NDVI to LAI, we used a generalized

NDVI-LAI model developed by Baret et al. (1989: Eq. 3).
This model has been used to convert NDVI into LAI values
in chaparral, oak woodland, and other ecosystems (Gamon
et al. 1995, Garson and Lacaze 2003, McMichael et al.
2004)

LAI ¼ � 1
k
� ln

NDVI1 �NDVI
NDVI1 �NDVIback

� �
: (3)

In Eq. 3, k is a parameter corresponding to the extinction
of solar radiation through a canopy, NDVI∞ is the maxi-
mum NDVI observed in each region, and NDVIback is the
background NDVI (in the absence of vegetation) for each
region. We parameterized this model for each vegetation
type in each image (Table 2). The parameter (k) was esti-
mated from Smith et al. (1991) for mixed pine vegetation
and from White et al. (2000) for all other vegetation types.
To avoid bias introduced by outliers, NDVIback was set
equal to the average NDVI of the 20 brightest soil/rock
pixels in each image.

C and N initialization and simulations

Prior to testing the three approaches, we initialized
organic soil C and N stores with small values and then ran a
preliminary spin-up to allow the three fastest-cycling soil C
pools to approach steady state (~500 yr). We generated cli-
mate data for these simulations by repeating the available
meteorological record for each watershed. After stabilizing
soil biogeochemical processes, we removed vegetation C and
N stores and proceeded with three methods for initializing
plant C and N stores: spin-up to steady state, remote sensing

with allometric relationships, and the new target-driven
spin-up approach.

Spin-up to steady state.—For the traditional steady-state
spin-up approach, we ran 200-yr and 50-yr spin-up simula-
tions in Johnson Creek and Rattlesnake Canyon, respec-
tively. These timespans allowed above- and belowground
vegetation C and N stores to reach steady state and corre-
sponded with the fire return interval (for stand-replacing
fires) in each watershed.

Allometric relationships.—For the allometric approach, we
used the LAI maps generated for each watershed and allo-
cated C and N to leaves, stems, and roots using allometric
ratios for each vegetation type, summarized in Table 3.

Target-driven spin-up.—For the target-driven spin-up, we
used the same LAI maps to define targets for each patch,
and then ran RHESSys in spin-up mode, tracking C and N
stores for each patch separately until they reached their tar-
get. For the target-driven spin-up runs, we set Tmax to
200 yr for Johnson Creek and 100 yr for Rattlesnake
Canyon.
We ran three 50-yr simulations for both watersheds, each

using one of the three initialization methods. To examine
differences among the three methods, we compared decadal
scale LAI, ET, NPP, streamflow, and N export. To evaluate
model performance in Johnson Creek, we compared mod-
eled and observed streamflow during a portion of the 50-yr
simulation in each watershed where we had both climate
and streamflow data, and excluded years that experienced
(or followed) stand-replacing fires. In Johnson Creek, this
included water years 2002–2006 (i.e., simulation years 0–5)
and performance was evaluated using NSE, NSE of log-
transformed flows, R2, and percent error in annual flow esti-
mations. In Rattlesnake Canyon, this included 2005–2008,
excluding water year 2007 due to missing streamflow data
(i.e., simulation years 0, 1, and 3), and performance was
evaluated using NSE, NSE of log-transformed flows, R2,
and percent error in annual flow estimations over the
streamflow recession periods (similar to the approach used
for calibration).

TABLE 2. Normalized difference vegetation index-leaf area index
(NDVI-LAI) model parameters for vegetation types in Johnson
Creek and Rattlesnake Canyon. NDVI∞ is the maximum NDVI
observed in each region, and NDVIback is the background
NDVI (in the absence of vegetation) for each region.

Vegetation k 2001 NDVI∞ 2001 NDVIback

Johnson Creek†
Pine 0.40 0.98 0.07
Grass 0.59 0.90 0.07
Shrub 0.55 0.90 0.07
Deciduous 0.54 0.88 0.07

Rattlesnake Canyon
Shrub 0.55 0.92 0.11

Note: NDVI∞ is the maximum NDVI observed in each region
and NDVIback is the background NDVI (in the absence of vegeta-
tion) for each region.
†NDVI∞ andNDVIback from 2001.
‡NDVI∞ andNDVIback from 2004.
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Finally, to explore how a chosen target variable can influ-
ence ecohydrologic projections, we ran five patch-scale simu-
lations in Johnson Creek that were initialized with various
targets. These simulations incorporated a single modeling
unit that used mean elevation, slope, aspect, and soil param-
eter values for the watershed. To initialize these simulations
for a young P. ponderosa stand, we obtained literature-based
target values for either LAI, stem wood C, canopy height,
stand age, or all four variables simultaneously (Law et al.
2001). While these initializations ignore spatial heterogene-
ity, they demonstrate the potential for using a range of tar-
gets in future applications where maps of such variables are
available. Following initialization, we ran five 50-yr simula-
tions and compared projections of cumulative ET and NPP
during the first 10 yr (the period when fluxes varied most
among targets).

RESULTS

In Johnson Creek, mean LAI calculated from an August
2001 Landsat scene was 2.94 (SE = 0.00 SE, SD = 0.81) for
patches classified as pine, 1.77 (SE = 0.00, SD = 0.58) for
those classified as grass, 1.55 (SE = 0.00, SD = 0.59)
for shrub, and 2.85 (SE = 0.02, SD = 0.92) for deciduous. In
Rattlesnake Canyon, where the AVIRIS footprint was much
smaller (i.e., 12 m as compared to 30 m) and where vegeta-
tion cover was entirely shrub, mean LAI calculated in
August 2004 was 2.12 (SE = 0.01, SD = 0.98).
Because we used LAI as the defining layer to initialize C

and N pools, the approach using allometric relationships
produced initial LAI estimates that essentially match those
derived from remote sensing values in both Johnson Creek
and Rattlesnake Canyon. The spin-up to steady state pro-
duced the lowest correspondence between initialized and
remotely sensed values (Fig. 3a, b). The target-driven spin-
up approach produced initial LAI estimates that corre-
sponded well with remote sensing estimates; however, some
patches never reached their targets (Fig. 3a, b). Although
allometric relationships and the target-driven spin-up
approach produced similar LAI distributions among
patches in both watersheds, C allocation to leaves, stems,

and roots varied among all three methods. In both water-
sheds, spin-up to steady state produced much larger stem
and root C pools relative to the two methods using remote
sensing (Figs. 4a–c, 5a–c).

50-yr fluxes in Johnson Creek

Over the course of the 50-yr post-initialization runs in
Johnson Creek, mean annual LAI values varied by up to
25% among the three methods, with allometric relationships
producing the highest long-term estimates, and spin-up to
steady state producing the lowest, due to the greater respira-
tion costs associated with the large initial stem and root C
pools (Fig. 6a). Also, LAI values declined rapidly in the first
three years after initialization with allometric relationships,
reflecting some instability with the allocation of initial C
and N pools (Fig. 6a). Belowground C stores and root
depth were 200–300% greater for the simulation that was ini-
tialized using spin-up to steady state (Fig. 6b). While root
depth remained relatively stable in the simulation that fol-
lowed spin-up to steady state, it increased slowly in simula-
tions following the other two initialization approaches
(Fig. 6b). Greater root biomass and depth following spin-up
to steady state resulted in increased ET and decreased
streamflow during the first 20 yr of the 50-yr simulation
(Fig. 7a, b). ET was also slightly lower, and streamflow
slightly higher for the simulation that was initialized using
target-driven spin-up relative to the one that was initialized
with allometric relationships. N export was highest for the
simulation that was initialized using the target-driven
method, followed by the one using spin-up to steady state
(despite reduced streamflow in the steady-state method;
Fig. 7c). This corresponded with decreased NPP (for simu-
lations initialized using spin-up to steady state; Fig. 7d). In
the first years of simulation (i.e., water years 2002–2006;
Figs. 6b, 8b), the new target-driven spin-up approach pro-
duced the best correspondence between modeled and
observed streamflow (Table 4).

Rattlesnake Canyon

In Rattlesnake Canyon, 50-yr LAI estimates were lower
for the simulation initialized using spin-up to steady state
(Fig. 8a). LAI values began to converge for the three meth-
ods over the course of the 50-yr simulations, as root C
increased for the two methods that used remote sensing. Ini-
tial root depth in Rattlesnake Canyon was greatest for the
simulation using spin-up to steady state, followed by the
simulation initialized using allometric relationships, and
lowest following target-driven spin-up (Fig. 8b). However,
simulated root depth following target-driven initialization
surpassed root depth following initialization with allometric
relationships within the first two years of simulation.
Despite the differences in C allocation among initialization
methods, mean annual ET, streamflow, and N export projec-
tions were relatively similar over the 50-yr simulation period
(Fig. 9a–c). NPP was slightly lower for the simulation ini-
tialized using spin-up to steady state (Fig. 9d). In water
years 2005, 2006, and 2008 (Fig. 8b), model performance
(i.e., correspondence between modeled and observed stream-
flow during recession periods) varied among metrics, with

TABLE 3. Allometric ratios used for allocating C and N to various
RHESSys state variables based on measured leaf area index
(LAI).

Parameter Pine Shrub Deciduous Grass

Specific leaf area 3.30† 11.11‡ 25‡ 25.30‡
Root : leaf 1.40‡ 1.40‡ 1.20‡ 1‡
Stem: leaf 0.98‡ 0.22‡ 2.20‡
Root : stem 0.27§ 0.29‡ 0.22‡
New live wood:
new total wood

0.07‡ 1.00‡ 0.16‡

C:N leaf 81.22§ 35‡ 25‡ 25‡
C:N root 90.90§ 58‡ 48‡ 50‡
C:N live wood 90.90§ 58‡ 48‡
C:N deadwood 876‡ 730‡ 550‡

†Averaged from Cregg (1994), Law et al. (2003), and Sala et al.
(2005).
‡White et al. (2000).
§Ter-Mikaelian and Korzukhin (1997).
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the new target-driven method producing the best log of
NSE, and allometric relationships producing the lowest per-
cent error (Table 4).

Target comparisons

Spin-up time varied among simulations using different
target variables to initialize a young P. ponderosa patch; LAI
and canopy height targets were met most quickly, while age
targets took the longest (Table 5). Projections of cumulative
ET over the first 10 yr of simulation varied up to 19% when
using different targets for initialization, while cumulative
NPP varied up to 18% (Table 5). Cummulative NPP and ET
were greater for simulations initialized using stem wood and
age targets relative to LAI and canopy height.

DISCUSSION

Initialization provides critical constraints on model
behavior; model estimates of C, N, and water fluxes vary
depending on which approach is used. In Johnson Creek,
spin-up to steady state produced large, stable, stem wood
and root C pools, leading to higher ET, and streamflow
projections that were 31% below field observations

(Table 4). Johnson Creek has a complex fire history, typi-
cal of watersheds in the Inland Northwest (Fig. 1a),
resulting in heterogeneous above- and belowground C
stores that are not captured by a steady-state approach. If
streamflow is used to subsequently calibrate model drai-
nage parameters, calibration may adjust for this error.
However, this compensation would result in biased drai-
nage parameters, producing the “right answers for the
wrong reasons” (Kirchner 2006) and potentially biasing
the use of the model for future scenarios. Overall, differ-
ences between steady state and remote sensing-based esti-
mates of biogeochemical and hydrologic fluxes reflect key
differences in the ecological function of heterogeneous
landscapes that include younger aggrading stands as com-
pared to homogeneously aged, mature forests.
In Rattlesnake Canyon, on the other hand, there were no

major differences in mean annual ET, streamflow, or N
export among the three methods (Fig. 9a–c). The similarity
between the approaches using remote sensing and spin-up to
steady state likely occurred because chaparral tends to expe-
rience large, stand-replacing fires, resulting in relatively
homogeneous stand ages across watersheds. In August 2004,
Rattlesnake Canyon had not burned for 40 yr, which is
almost the length of time the watershed was spun up for the

FIG. 3. Comparisons of target leaf area index (LAI) from remote sensing and initialized LAI in (a) Johnson Creek and (b) Rattlesnake
Canyon using each of the three initialization methods: spin-up to steady state, remote sensing with allometric relationships, and target-
driven spin-up. Points represent mean LAI for each patch.
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steady-state approach. Therefore, initializing Rattlesnake
Canyon with 2004 as the remote sensing scene led to C and
N distributions that were functionally similar to the spin-up
to steady-state approach. Also, because post-disturbance

hydrologic recovery in chaparral usually occurs within 1–
4 yr (Verkaik et al. 2013), differences in vegetation structure
among mature stands, such as those modeled here, are not
likely to have significant ecohydrologic effects.

FIG. 4. Occurance of (a) leaf C, (b) stem C (including live and dead stems), and (c) root C (including fine roots as well as live and dead
coarse roots) allocation values across patches in Johnson Creek immediately after initialization. For visualization purposes, the plots are
rescaled such that the peak density equals 1.

FIG. 5. Occurrence of (a) leaf C, (b) stem C (including live and dead stems), and (c) root C (including fine roots as well as live and dead
coarse roots) allocation values across patches in Rattlesnake Canyon immediately after initialization. For visualization purposes, the plots
are rescaled such that the peak density equals 1.
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Although mean annual hydrologic fluxes were similar
among methods in Rattlesnake Canyon, the simulation
initialized using target-driven spin-up did a slightly better
job capturing daily streamflow observations compared to

the one using allometric relationships (Table 4). While the
discrepancy was small in this study, it may be larger in
other chaparral watersheds where allometric relationships
are often poor predictors of shrub growth. In chaparral,

FIG. 6. (a) Leaf area index (LAI) and (b) rooting depth in Johnson Creek over 50 yr of simulation using each of the three initialization
approaches: spin-up to steady state, remote sensing with allometric relationships, and target-driven spin-up.

FIG. 7. In Johnson Creek, 50-yr fluxes following each of the three initialization approaches: spin-up to steady state, remote sensing with
allometric relationships, and target-driven spin-up for (a) total annual evapotranspiration (ET), (b) total annual streamflow, (c) N export,
and (d) net primary productivity (NPP).
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a single shrub can have several basal stems that can be
meters apart, and region-specific allometric relationships
often do not exist due to logistical constraints (Brown
1976, Uyeda et al. 2016). Overall however, it appears that
all three approaches did an adequate job of projecting
hydrologic fluxes in the more homogenously aged cha-
parral watershed, with performance similar to that
achieved in previous studies (Shields and Tague 2012,
Chen 2016).

Spin-up to steady state

When using the traditional spin-up to steady-state
approach to initialize C and N pools, LAI projections were
initially lower than in simulations using the other two meth-
ods, due to the greater respiration costs associated with the
large stem and root C pools (Figs. 6a, 8a). Although esti-
mates converged among the three approaches over the
course of the 50-yr simulations, most rapidly in Rattlesnake
Canyon (Figs. 6a, 8a), there were still large and more persis-
tent differences in the way C was allocated to plant pools in
both watersheds (Figs. 4a–c, 5a–c, 6b, 8b). In Johnson
Creek, large differences C allocation led to divergent projec-
tions of biogeochemical and hydrologic fluxes. These differ-
ences result from complex linkages among C, N, and water
cycling that change as forests grow (Law et al. 2001).
During first few decades of simulation after spin-up to

steady state in Johnson Creek, ET was higher (Fig. 7a)
and streamflow was lower (Fig. 7b) than in simulations
using the other two initialization methods. This coincided
with elevated N export in the steady-state approach rela-
tive to the approach using allometric relationships
(Fig. 7c). In general, N-export is a function of both min-
eral N availability and how much water is available for
transport (Gallo et al. 2015). At steady state, Nmexport is
elevated even when streamflow is low, reflecting greater N
availability. At equilibrium, N does not generally limit
plant growth; therefore, N outputs are equal to inputs
(Vitousek and Reiners 1975). For simulations initialized
with allometric relationships, which included growing
patches with high ET, N uptake was greater, and even
though more water was available for transport (i.e.,
streamflow was higher), N export was lower.

FIG. 8. (a) Leaf area index (LAI) and (b) rooting depth in Rattlesnake Canyon over 50 yr of simulation using each of the three initializa-
tion approaches: spin-up to steady state, remote sensing with allometric relationships, and target-driven spin-up. The * indicate years that
were used to evaluate the correspondence between observed and modeled streamflow.

TABLE 4. Performance statistics for comparisons between modeled
and observed streamflow during the simulation period spanning
real climate data and prior to any wildfires; i.e., water years 2002–
2006 in Johnson Creek (i.e., simulation years 0–5 in Fig. 6), and
2005–2008 (excluding water year 2007 due to missing streamflow
records) in Rattlesnake Canyon (i.e., simulation years 0, 1, and 3
in Fig. 8).

Method NSE log(NSE) R2 Error (%)

Johnson Creek
Spin-up to steady state 0.66 0.86 0.90 �32.43
Allometric relationships 0.78 0.85 0.90 �4.86
Target-driven spin-up 0.79 0.86 0.89 1.46

Rattlesnake Canyon
Spin-up to steady state 0.40 11.33
Allometric relationships 0.42 4.48
Target-driven spin-up 0.44 9.84

Notes: Performance was evaluated for each method in Johnson
Creek using the Nash-Sutcliffe efficiency metric (NSE), NSE of log-
transformed flows (to evaluate low flow periods), R2 for the Pearson
correlation coefficient between daily observed and modeled flow,
and percent error in annual flow estimations. In Rattlesnake Can-
yon, performance was evaluated using NSE of log-transformed
flows and percent error in annual flow estimations during stream-
flow recession periods.
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Allometric relationships

Combining observations with allometric relationships can
improve our ability to capture non-equilibrium conditions.
However, when using literature-derived allometric relation-
ships to initialize C and N pools in Johnson Creek, LAI val-
ues declined rapidly during the first few years after
initialization (Fig. 6a). This type of instability can occur
when root C is too small to access sufficient water to sup-
port the photosynthesis rates that are necessary to maintain
initialized leaf and stem C stores (Running and Coughlan

1988). In such cases, photosynthesis will be consistently
lower than respiration and turnover losses, leading to a
rapid decline in vegetation biomass. Over time, the model
corrects these instabilities by reducing plant biomass and
regrowing more functionally stable stands. Thus, the simula-
tion that was initialized using allometric relationships in
Johnson Creek eventually (after 8 yr) recovered its initial-
ized LAI (Fig. 6a). However, many patches crashed and
gradually recovered in the first few years of simulation, sug-
gesting that allometric relationships may not be useful for
shorter-term studies, particularly those focused on the first
decade of recovery from disturbance.
Surprisingly, in Rattlesnake Canyon where allometric rela-

tionships were expected to be less reliable, far fewer patches
crashed in the first few years of simulation. This suggests
that initialization approach can be particularly important in
watersheds with heterogeneous stand ages like Johnson
Creek. However, even in watersheds with more homoge-
neous vegetation, allometric relationships can still lead to C
and N distributions that are unstable depending on local
environmental conditions. We designed the new target-dri-
ven spin-up method to account for both resource hetero-
geneity and instability that can result from using empirical
relationships.

Target-driven spin-up

Target-driven spin-up provides a more mechanistic initial-
ization strategy that still accounts for landscape heterogene-
ity and non-steady-state conditions. Unlike the allometric
relationship approach, when plant C stores develop over the
course of spin-up, aboveground biomass is limited to what

FIG. 9. In Rattlesnake Canyon, 50-yr fluxes following each of the three initialization approaches: spin-up to steady state, remote sensing
with allometric relationships, and target-driven spin-up for (a) total annual evapotranspiration (ET), (b) total annual streamflow, (c) N
export, and (d) net primary productivity (NPP).

TABLE 5. Results from comparison of patch-scale runs using
different targets for initialization.

Target Observed
Years to
initialize

Cumulative
ET (mm/10 yr)

Cumulative
NPP

(kg C�m�2�
10 yr�1)

Leaf area
index

1 10 7,022 4.23

Stem wood
C (kg/m2)

0.52 14 8,593 5.12

Height (m) 4 10 7,022 4.64
Age (yr) 15 15 8,638 5.17
All† See above 15 8,638 5.17

Notes: Target values were obtained for young Pinus ponderosa
stand in the Pacific Northwest, USA (Law et al. 2003). Following
initialization, we ran a set of 10-yr simulations to compare cumula-
tive evapotranspiration (ET) and net primary productivity (NPP).
†All four targets were used for this run. At the patch scale the

“all” initialization will match whichever target takes the longest to
spin up; in this case age. At the watershed scale, this could vary
among patches.
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can be supported by root C. We found that, in Johnson
Creek, the target-driven approach led to streamflow projec-
tions that corresponded most closely with field observations
(Table 4). However, our study also illustrates limitations to
using LAI to define targets. For example, in Johnson Creek,
the coarser spatial resolution of Landsat (i.e., 30 m) and
potential scaling mismatches between vegetation classified
using the National Land Cover Database and actual
groundcover likely yielded mixed pixels, especially between
the two dominant vegetation types: grass and pine. Some
patches classified as grass may actually contain a mixture of
grass and pine species, yielding higher radiometrically aver-
aged NDVI in August relative to NDVI expected for grass
only. Similarly, pine patches that also contain grass cover
may have lower-than-expected NDVI if the grass proportion
of a mixed pixel is large enough to dampen the signal
(Eklundh et al. 2003). In RHESSys, grass patches with over-
estimated LAI would likely never reach their targets, and
would therefore spin up for the maximum number of years
(200 in the current study), while mixed pine patches would
meet their targets too soon.
In addition to the potential scaling errors, there may also

be error associated with using LAI as a target. Although
LAI projections began to converge for the three methods
over the course of the 50-yr simulations, root C and root
depth remained different, particularly in Johnson Creek
(Figs. 6a, b, 8a,b), which led to 17% less streamflow over the
course of the 50-yr simulations. While two systems can have
similar LAI, one may be at steady state while the other is
actively growing belowground. Also, local differences in
resource availability can lead to differences in the amount of
C that plants allocate to roots (Running and Gower 1991).
This raises two questions: (1) can using LAI as a target
cause root biomass to be underestimated in some cases?
And, therefore, (2) is LAI the best variable to use for target-
driven spin-up?
LAI integrates several processes relating to C allocation

and resource availability, and is a widely available data prod-
uct. Thus, if models reasonably represent landscape patterns
and soil processes, LAI should provide suitable targets for
estimating plant C stores. Leaf Area Index is also mechanis-
tically useful in models like RHESSys that account for pro-
cesses that vary with canopy depth, such as light extinction
and rainfall interception (Turner et al. 2004), and it is rela-
tively easy to calculate from multispectral satellite data
because it generally correlates well with vegetation indices
such as the normalized difference vegetation index (NDVI).
However, there are some caveats to consider when using
LAI as a target. For one, LAI estimates do not always reflect
fine-scale age differences in dense forests because the rela-
tionship between LAI and NDVI tends to be asymptotic,
with LAI levels saturating at values between 3 and 5 (Turner
et al. 1999). Also, vegetation tends to recover its pre-distur-
bance LAI more quickly than many other C stores. In our
patch-scale comparisons, we found that targets for LAI and
canopy height were met much more quickly than those for
age and stem wood C (Table 5). This led to 10-yr cumulative
ET estimates that were 18–19% lower for simulations initial-
ized with LAI and canopy height. Simulations initialized
using stem wood C and age targets on the other hand pro-
duced to similar estimates (within 1%).

Age is a preferred target variable because it eliminates
multiple sources of error that are involved in modeling LAI
and other target C stores (e.g., estimation of photosynthesis
rates, parameterization of specific leaf area, carbon alloca-
tion strategies, and the timing of phenology). However,
accurate estimates of stand age rely on documentation
rather than post-hoc measurements. Thus stand age esti-
mates are unlikely to be available for most locations and
simulation start times; while products that can be derived
from post-hoc observations and remote sensing such as
LAI, height, or stem wood C are available for most sites. We
found that stem wood C can provide spin-up targets that
match most closely with stand age. Therefore, as spatial esti-
mates of stem wood C become more widely available, they
may provide more realistic targets than LAI. Despite its lim-
itations however, LAI estimates can still be useful for gener-
ating coarse spin-up targets because they vary among older
and more recently disturbed patches.
Here, we used Landsat and AVIRIS-derived LAI esti-

mates to provide proof-of-concept for a target-driven
approach. Using LAI allowed us to compare projections
between the target-driven approach and an existing method
using remote sensing (i.e., allometric relationships). Most
patches in the two study watersheds were at or below the sat-
uration threshold for NDVI. This occurred in Johnson
Creek because most patches burned in one or more of sev-
eral fires that occurred in recent decades, while in Rat-
tlesnake Canyon, the mean LAI for our 2004 scene was
around two. Also, in mature chaparral, shrub LAI is typi-
cally below 3.5 (Tague et al. 2009). However, an advantage
of the new approach is that it can readily use finer resolu-
tion, and more-accurate target variables when available.
Also, the target-driven approach allows multiple targets to
be set simultaneously, which can further improve estimates
of C allocation.

Other remote sensing products for generating targets

Hyperspectral remote sensing data (e.g., from AVIRIS)
can be used to estimate other C and N stores used in land-
scape models, for example, RHESSys models leaf N, which
is a major constituent of chlorophyll. The absorbance prop-
erties of leaf N are reflected in the spectral signature of
leaves (Blackburn 2007). Because leaf N both influences and
is influenced by heterogeneous environmental and physio-
logical processes across a watershed, it may be an effective
target variable for constraining C and N allocation during
spin-up. However, there is still a great deal of uncertainty in
how to interpret leaf biochemistry from spectral properties,
as there can be significant error associated with radiative
transfer through three-dimensional canopies (Knyazikhin
et al. 2013). Where available, lidar estimates of canopy
structure may help disentangle vertical effects on these rela-
tionships.
Lidar measures the three-dimensional vertical structure

of vegetation with high accuracy (Dubayah and Drake
2000). Previous studies have developed methods for using
lidar data to initialize C cycling models. For example,
Hurtt et al. (2004) developed look up tables that linked
canopy height with model projections of changes in forest
structure using the Ecosystem Demography (ED) model.
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Then, in combination with lidar data, they used these
tables to initialize forest C stores. Expanding on this, Tho-
mas et al. (2008) used detailed topographic and climate
data to link canopy height with modeled above ground C
stores for unique elevation bands across a mountainous
watershed. This allowed them to initialize elevation-specific
C stores with lidar, thus accounting for the effects of eleva-
tional gradients on C cycling processes. Both methods are
useful for empirically constraining the state of initial above-
ground C pools.
Our new target-driven approach extends and generalizes

these previous methods by providing a framework for incor-
porating multiple data sources at high spatial resolution,
while also ensuring that the initialized C stores are consis-
tent with the mechanistic model. Thus, similar to the
approaches above, target-driven spin-up can account for
local environmental conditions using lidar or other remote
sensing products to initialize C stores while also, in some
cases, increasing model stability. Lidar data can be used to
generate targets such as canopy height, stem wood C, and
biomass. Like LAI, biomass is a meaningful target variable
for C studies because biomass recovery after disturbance
directly influences net ecosystem C exchange (Houghton
et al. 2009). In addition, biomass measurements from lidar
can be used to generate non-asymptotic estimates of LAI
(Lefsky et al. 1999), providing another option for generating
spin-up targets. However, a current limitation is that lidar
data sets are expensive, and those designed to measure
canopy structure are relatively rare. Further, unless lidar
data are acquired and processed following specific methods,
they do not discriminate between live and dead trees, which
is critical for initializing models.

Incorporating soil pools

While C allocation to roots influences biogeochemical
and ecohydrologic processes at landscape scales, other
belowground properties also play a role in these dynamics.
One of the largest sources of uncertainty in ecohydrologic
modeling is how soil properties, including hydraulic conduc-
tivity, water storage, and C pool dynamics vary across water-
sheds (Kumar et al. 2010). To address the first two
categories of uncertainty, many models (including
RHESSys) calibrate soil drainage and storage parameters
using daily streamflow statistics. For soil C and N pools
however, models typically assume near steady-state condi-
tions (Schimel et al. 1997, Morales et al. 2005) and initialize
pools using methods similar to the spin-up to steady-state
approach used for vegetation. These steady-state assump-
tions are unrealistic in many terrestrial ecosystems because
it can take millennia for soil C and N stores to reach equilib-
rium following disturbance (Wardle et al. 1997, Cannell and
Thornley 2003, Wutzler and Reichstein 2007).
While the new spin-up method can easily be extended to

use soil pools as targets, spatially explicit soil C data are cur-
rently very limited, and not easily obtained with remote
sensing. In addition to a lack of data, it can be difficult to
translate field measurements of soil C to state variables in
models. This is because, unlike vegetation state variables,
modeled soil C and N pools are not easy to differentiate in
the field (Smith et al. 2002). Most models use a set of

kinetically defined C and N pools, with varying recalci-
trance, to simplify the processes involved in exponential
decay. In these models, decomposition removes a constant
fraction from each pool at every time step as a function of
its decomposition rate and environmental conditions (Wut-
zler and Reichstein 2007). In nature, on the other hand,
organic matter is a complex mixture of materials, and there
is no unequivocal way to distinguish between fast, interme-
diate, and slow-cycling pools; often decomposition rates are
determined as much by microbial access to C compounds as
they are by the molecular composition of those compounds
(Stockmann et al. 2013). Nevertheless, this multi-pool
abstraction allows models to adequately project C fluxes at
decadal time scales, especially given the uncertainty associ-
ated with the distribution of belowground C stores (Parton
1996, Tague and Band 2001, Nemani et al. 2005).
Other approaches have been developed to account for soil

stores that are not at steady state and may be useful in com-
bination with a vegetation-focused, target-driven spin-up.
For example, Wutzler and Reichstein (2007) and (Carvalhais
et al. 2008) developed an initialization approach using a “re-
laxed steady-state assumption.” This approach scales soil C
pools, using a parameter derived from eddy covariance C
flux data, following a normal spin-up to equilibrium, allow-
ing users to more-realistically initialize non-steady-state
conditions at landscape scales. (Hashimoto et al. 2011), then
expanded the method to account for feedbacks with soil N
pools, using a “slow-relaxation scheme.” In this scheme, the
scaling parameter introduced by (Carvalhais et al. 2008)
and an “easing factor” are used to adjust C pools during
spin-up, allowing for longer-term interactions between soil
C and N. While both approaches improve model estimates
of net-ecosystem productivity, the slow-relaxation scheme
accounts for the effects of ecosystem N dynamics, such as
mineralization rates, on productivity when ecosystems are
not at steady state, while also overcoming model instability
that can occur with the C-only approach (Hashimoto et al.
2011). These approaches may work in tandem with the new
target-driven spin-up method when landscape-scale data are
available. As spatial data become more widely available, and
as computing capabilities improve, we can continue to refine
the way we simulate and initialize complex belowground
processes at watershed scales.

Future work

In addition to developing strategies for better-initializing
soil stores, future studies should focus on evaluating which
metrics provide the best initialization of post-disturbance
plant dynamics. In the current study, the target-driven spin-
up approach improved model performance in Johnson
Creek. However, at the patch-scale, model projections varied
when using different target variables to initialize plant C and
N stores (e.g., LAI vs. stem wood C; Table 5), and suggested
that using stem wood C rather than LAI may improve ini-
tialization, provided that accurate estimates are available. It
is likely that the utility different initialization targets will
vary across a range of sites, reflecting local ecological condi-
tions. An important next step is to evaluate watershed-scale
model performance following initialization with a range of
target variables. With this knowledge, and as satellite
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systems continue to improve, we can further increase our
modeling accuracy.
Another current limitation of many C cycling models (in-

cluding RHESSys) is that they do not account for species
shifts that can occur following disturbance. This limitation
can add error to projections of biogeochemical cycles, for
example, during the early stages of succession (Hurtt et al.
2010). Several ecosystem biogeochemical models have
addressed this limitation by incorporating submodels for
temporal shifts in plant functional type (PFT; e.g., Moor-
croft et al. 2001, Bond-Lamberty et al. 2005, Keane et al.
2011). It may also be possible to use remote sensing
approaches to initialize spatial PFT transitions across land-
scapes (Hakkenberg et al. 2018). Incorporating PFT shifts
into models that employ mechanistic, target-driven initial-
ization may further improve biogeochemical projections in
disturbance-prone watersheds.

CONCLUSIONS

In his famous paper on predictability, Lorenz (1972)
found that the tiny rounding errors in climate models could
produce vastly different long-term forecasts. Similarly, in
watershed models, which incorporate many complex interac-
tions and feedbacks, small changes in initial conditions can
have large effects on decadal-scale projections. Advances in
sensors, satellite systems, and our ability to process large
data sets provide an opportunity to better initialize land-
scape heterogeneity and disturbance history in models (Rau-
pach et al. 2005). To do this successfully, however, we must
develop coherent methods for combining these large spatial
data sets with process-based models. Our approach focused
on developing a framework for synthesizing multiple remote
sensing products with mechanistic spin-up methods to better
initialize disturbance history in watersheds.
In Johnson Creek (the larger, more-heterogeneous water-

shed), remote sensing provided the most realistic initial con-
ditions. And though initializing with allometric
relationships provided starting LAI values that corre-
sponded most precisely with remote sensing, it allocated
corollary C and N pools using empirical rather than mecha-
nistic relationships, resulting in less stable estimates of LAI
and streamflow in the first decade of simulation. These
instabilities can make allometric relationships unreliable for
initializing studies that focus on the first decade of recovery
from disturbance. The target-driven spin-up approach, on
the other hand, used remote sensing to constrain mechanis-
tic biogeochemical and hydrologic processes in the model.
While there is some error associated with both remote sens-
ing and modeling estimates of LAI, the target-driven
approach appears to provide a useful crosswalk between
them. The primary benefit of the new approach, however, is
that it is designed to incorporate a greater diversity of data
sets, going beyond the traditional use of LAI and allometric
relationships. While our proof of concept combined Landsat
and AVIRIS-derived LAI with the process-based model
RHESSys, the framework can readily use other remote sens-
ing products (Table 1), and can be applied to other spatially
distributed models, allowing it to improve with advancing
technology. Combining these state-of-the-art tools may help
us to evaluate global change issues, including climate

change, drought, and habitat degradation, in ways that were
previously impossible.
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